Toxic cyanobacteria (blue-green algae)

Page

A long-standing research area primarily concerned with computer simulation of the growth and movement of problem cyanobacterial blooms and strategies for their management.

2012 Howard, A. Toxic Cyanobacteria in Bengstsson, L., Herschy, R. and Fairbridge, R. (eds) Encyclopedia of Lakes and Reservoirs. Springer. ISBN 9781402056161.

2011 Guven, B. and Howard, A. Sensitivity analysis of a cyanobacterial growth and movement model under two different flow regimes, Environmental Modeling and Assessment. 16:577-589.

algiedeclow

  • Scientists begin to unlock secrets of deep ocean color from organic matter
    About half of atmospheric carbon dioxide is fixed by ocean's phytoplankton, mainly picocyanobacteria, through a process called photosynthesis. Picocyanobacteria are tiny, unicellular microorganisms that are abundant and widely distributed in freshwater and marine environments. A large portion of biologically fixed carbon is formed by picocyanobacteria at the sea surface and then transported to the deep ocean. But what remains a mystery is how colored dissolved organic matter which originates from plant detritus (either on land or at sea) makes it into the deep ocean. A team of scientists from the University of Maryland Center for Environmental Science (UMCES) and around the world potentially found a viable marine source of this colored material.
  • A small RNA molecule in cyanobacteria affects metabolic acclimation
    International researchers working in collaboration with Professor Wolfgang R. Hess and Dr. Jens Georg, both from the University of Freiburg's Faculty of Biology, have discovered a small RNA molecule that plays a key role in how cyanobacteria adjust their metabolism to the amount of iron available in the environment. Oxygenic photosynthesis – in which plants, algae and cyanobacteria generate oxygen and harvest solar energy for the synthesis of organic matter – is a process that depends on iron. When only low amounts of iron are available, cyanobacteria are able to reduce their photosynthetic activity by using what the researchers are calling IsaR1, which stands for "iron stress activated RNA 1." The team of researchers have published their findings in the latest issue of Current Biology.
  • Rising carbon dioxide levels, ocean acidity may change crucial marine process
    Climate change may be putting cyanobacteria that are crucial to the functioning of the ocean at risk as the amount of carbon dioxide in the atmosphere increases and the acidity of ocean water changes.
  • Optimizing cyanobacteria for biofuel production
    Cyanobacteria have attracted significant attention as potential biocatalysts for production of clean energy and green chemicals from sunlight and atmospheric CO2. A recent study investigated effects of altering large cellular complexes called phycobilisomes, which cyanobacteria use to efficiently capture light energy for photosynthesis, to guide development of optimal strategies for biofuel production.
  • Study: Early organic carbon got deep burial in mantle
    Rice University petrologists who recreated hot, high-pressure conditions from 60 miles below Earth's surface have found a new clue about a crucial event in the planet's deep past.
  • Photosynthesis in the dark? Unraveling the mystery of algae evolution
    Scientists have long studied which of the three primary photosynthetic eukaryotes (red algae, green algae, and glaucophytes) has come into existence first to unravel the biological mystery of algae evolution by analyzing their genetic information.
  • How do plants make oxygen? Ask cyanobacteria
    The ability to generate oxygen through photosynthesis—that helpful service performed by plants and algae, making life possible for humans and animals on Earth—evolved just once, roughly 2.3 billion years ago, in certain types of cyanobacteria. This planet-changing biological invention has never been duplicated, as far as anyone can tell. Instead, according to endosymbiotic theory, all the "green" oxygen-producing organisms (plants and algae) simply subsumed cyanobacteria as organelles in their cells at some point during their evolution.
  • Operation of ancient biological clock uncovered
    A team of Dutch and German researchers has discovered the operation of one of the oldest biological clocks in the world, which is crucial for life on earth as we know it. The researchers applied a new combination of cutting-edge research techniques. They discovered how the biological clock in cyanobacteria works in detail. Important to understand life, because cyanobacteria were the first organisms on earth producing oxygen via photosynthesis. The results of their research will be published in Science.
  • Climate change causes shrubs and trees to expand northward in the subarctic
    In northern Scandinavia, shrubs expand into the tundra, where fixation of nitrogen from the air is mostly performed by cyanobacteria associated with mosses. Additionally, enhanced nitrogen fixation stimulates plant growth. New research shows that as taller shrubs expand into the tundra, nutrients in leaf litter will either promote or reduce nitrogen fixation, depending upon which shrub species dominates. The scientific results have recently been shown by scientists Kathrin Rousk and Anders Michelsen from Center for Permafrost and Department of Biology at University of Copenhagen, and is now published in Global Change Biology.
  • Changing temperatures and precipitation may affect living skin of drylands
    Arid and semiarid ecosystems are expected to experience significant changes in temperature and precipitation patterns, which may affect soil organisms in ways that cause surfaces to become lighter in color and thus reflect more sunlight, according to a new U.S. Geological Survey study.
  • World's oldest plant-like fossils discovered
    Scientists at the Swedish Museum of Natural History have found fossils of 1.6 billion-year-old probable red algae. The spectacular finds, publishing on 14 March in the open access journal PLOS Biology, indicate that advanced multicellular life evolved much earlier than previously thought.
  • Increased water availability from climate change may release more nutrients into soil in Antarctica
    As climate change continues to impact the Antarctic, glacier melt and permafrost thaw are likely to make more liquid water available to soil and aquatic ecosystems in the McMurdo Dry Valleys, potentially providing a more nutrient-rich environment for life, according to a Dartmouth study recently published in Antarctic Science.
  • Diamond's 2-billion-year growth charts tectonic shift in early Earth's carbon cycle
    A study of tiny mineral 'inclusions' within diamonds from Botswana has shown that diamond crystals can take billions of years to grow. One diamond was found to contain silicate material that formed 2.3 billion years ago in its interior and a 250 million-year-old garnet crystal towards its outer rim, the largest age range ever detected in a single specimen. Analysis of the inclusions also suggests that the way that carbon is exchanged and deposited between the atmosphere, biosphere, oceans and geosphere may have changed significantly over the past 2.5 billion years.
  • Study: Viruses support photosynthesis in bacteria – an evolutionary advantage?
    Viruses propagate by infecting a host cell and reproducing inside. This not only affects humans and animals, but bacteria as well. This type of virus is called bacteriophages. They carry so-called auxiliary metabolic genes in their genomes, which are responsible for producing certain proteins that give the virus an advantage. Researchers at the University of Kaiserslautern and the Ruhr University Bochum have analysed the structure of such a protein more closely. It appears to stimulate the photosynthesis of host bacteria. The study has now been published in the Journal of Biological Chemistry.
  • Boosting the solar protection factor with rationally designed, nature-inspired sunscreens
    The ideal sunscreen should block UVB and UVA radiation while being safe and stable. In the journal Angewandte Chemie, Spanish scientists have introduced a new family of UVA and UVB filters based on natural sunscreen substances found in algae and cyanobacteria. They are highly stable and enhance the effectivity of commercial sunscreens.
  • Toxic mercury in aquatic life could spike with greater land runoff
    A highly toxic form of mercury could jump by 300 to 600 percent in zooplankton—tiny animals at the base of the marine food chain—if land runoff increases by 15 to 30 percent, according to a new study.
  • Vitamin B-12, and a knockoff version, create complex market for marine vitamins
    The New Year is a busy time for pharmacies and peddlers of all health-related products. In the oceans, marine organisms rely on nutrients, too, but the source of their vitamins is sometimes mysterious.
  • Cyanobacteria—the future of sunscreen?
    Sunscreens and moisturizers derived from biological sources such as cyanobacteria could represent a safer alternative to current, synthetically produced cosmetics, research published in the European Journal of Phycology suggests.
  • Chronicling the complex ecological changes wrought by increasingly volatile El Niño – La Niña cycles
    When Brown University Professor Jon Witman returned this year to a small patch of coral off the Galápagos Islands that he had first marked off for study in 2000, he saw virtually nothing—and that told him a lot. An underwater ecosystem that had been teeming with diverse life 16 years ago was now a barren patch, an apparent victim of increasingly strong El Niño weather systems amid global climate change.
  • Study of 3.5 billion years of Earth's history: A fertilizer dearth foiled animal evolution for eons?
    For three billion years or more, the evolution of the first animal life on Earth was ready to happen, practically waiting in the wings. But the breathable oxygen it required wasn't there, and a lack of simple nutrients may have been to blame.
  • Molecular Velcro boosts microalgae's potential in biofuel, industrial applications
    Michigan State University scientists have engineered "molecular Velcro" into to cyanobacteria, boosting this microalgae's biofuel viability as well as its potential for other research.
  • Mapping the molecules made by a lichen's resident microbes
    An international team of researchers has spatially mapped molecules produced by an intact, complex microbial community for the first time. Using a tiny slice of lichen, the team used imaging mass spectrometry to track and plot metabolites made by both bacterial and fungal lichen members. Their approach, published this week in mSystems, an open-access journal of the American Society for Microbiology, shows how researchers can tease apart the chemistry that shapes and maintains a complex, three-dimensional microbial community.
  • Factors promoting growth of cryoconite granule formation and glacial/ice sheet melting
    Cryoconite granules (see Figure 1) are dark, millimeter-sized aggregations of bacteria and algae, mineral particles and organic matter that form on the surface of glaciers. They are also known to be a significant factor responsible for the acceleration in glacial and ice sheet melting. Research on Greenland's glaciers has revealed that cryoconite granule formation increases in areas on the glacier surface containing higher amounts of fine (250 μm or smaller) mineral particle sediment. Research findings were recently published in the journal FEMS Microbiology Ecology.
  • Smart buoy for measuring water pollutants
    All over the world, lakes, rivers, and coastal waters are threatened by high nutrient inputs. Nitrate or phosphates from waste-waters or fertilizers causes eutrophication. The consequence: Algae, in particular cyanobacteria (blue-green algae), grow uncontrollably and may release toxic substances. Hence, extensive water monitoring is indispensable for drinking water supply and water protection. Researchers of Karlsruhe Institute of Technology (KIT) now develop a smart monitoring system in cooperation with the companies ADM Elektronik and bbe Moldaenke. They combine various technologies in a depth profile-measuring multi-sensor buoy for monitoring water bodies and in particular algae growth. The project is funded by the Federal Ministry of Education and Research.
  • The chloroplast connection
    Blue-green algae may look simple, but their photosynthetic apparatus certainly isn't. Its mode of assembly remains puzzling, but the loss of a small protein, variants of which are found in higher plants, clearly causes a lot to go wrong.
  • Harmful algal blooms in their true colors
    Explosive growth of cyanobacteria, also called blue-green algae, is nothing new. In fact, such cyanobacteria probably produced the original oxygen in Earth's atmosphere billions of years ago.
  • Algae as vessels for synthetic biology
    Algae (a term used to group many photosynthetic organisms into a rather heterologous mash-up) do not have a kind place in the public imagination. Take for example the following passage from Stephen King's Pet Semetary:
  • Cut phosphorus to reduce algae blooms, say scientists
    Several prominent Canadian and American scientists are urging governments around the world to focus on controlling phosphorus to decrease the frequency and intensity of algal blooms in freshwaters. Their recommendation follows this week's publication of a feature article in a leading environmental science journal, Environmental Science & Technology. The article reviews the results of whole-lake studies where phosphorus, nitrogen or both elements had been controlled.
  • Bacteria could aid search for creatures on other planets
    Could there be a way to find bacterial structures on another planet? And if so, how important might these bacteria be in making a planet life-friendly? These are some of the questions that could be answered through studies on stromatolites, which are mounds of calcium-carbonate rock that are built up through lime-secreting cyanobacteria (bacteria that use photosynthesis for energy).
  • Better understanding of light harvesting may benefit agriculture
    Research at ANSTO has helped to reveal insights into a molecular mechanism for harvesting light in extreme conditions. These insights may ultimately lead to previously inaccessible regions of the electromagnetic spectrum becoming available for agricultural production or splitting of water into hydrogen in technological applications of photosynthetic machinery.

guvenhoward1

guvenhoward2